K-Means cluster analysis in earthquake epicenter clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranking and Clustering Iranian Provinces Based on COVID-19 Spread: K-Means Cluster Analysis

Introduction: The Coronavirus has crossed geographical borders. This study was performed to rank and cluster Iranian provinces based on coronavirus disease (COVID-19) recorded cases from February 19 to March 22, 2020. Materials and Methods: This cross-sectional study was conducted in 31 provinces of Iran using the daily number of confirmed cases. Cumulative Frequency (CF) and Adjusted CF (ACF)...

متن کامل

Cluster Analysis Using Rough Clustering and k-Means Clustering

IntroductIon Cluster analysis is a fundamental data reduction technique used in the physical and social sciences. It is of potential interest to managers in Information Science, as it can be used to identify user needs though segmenting users such as Web site visitors. In addition, the theory of Rough sets is the subject of intense interest in computational intelligence research. The extension ...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

K-Means Cluster Analysis for Image Segmentation

Does K-Means reasonably divides the data into k groups is an important question that arises when one works on Image Segmentation? Which color space one should choose and how to ascertain that the k we determine is valid? The purpose of this study was to explore the answers to aforementioned questions. We perform K-Means on a number of 2-cluster, 3cluster and k-cluster color images (k>3) in RGB ...

متن کامل

A fast k-means clustering algorithm using cluster center displacement

In this paper, we present a fuzzy k-means clustering algorithm using the cluster center displacement between successive iterative processes to reduce the computational complexity of conventional fuzzy k-means clustering algorithm. The proposed method, referred to as CDFKM, first classifies cluster centers into active and stable groups. Our method skips the distance calculations for stable clust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advances in Intelligent Informatics

سال: 2017

ISSN: 2548-3161,2442-6571

DOI: 10.26555/ijain.v3i2.100